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RINGKASAN: Penentuan lokasi dan susunan stesen pemeriksaan yang optima 
akan dibentangkan dalam kertas ini. Pengertian optima dalam kes ini melibatkan 
faktor-faktor seperti kos pemeriksaan, kos membenarkan unit cacat menjadi keluaran, 

dan kos kegagalan dalaman. Tujuan utama dalam kerja ini adalah untuk 
membangunkan kaedah pengoptimuman yang effisien yang akan meminimakan 
fungsi kos kepada permasalahan yang dinyatakan. Kaedah pengoptimuman yang 
dicadangkan adalah Algorithma Genetik (GA). Pengenalan kepada konsep GA dan 
pengkodan penyelesaian akan dibincangkan. Pengesetan parameter kepada 

operator genetik dan bagaimana permulaan populasi penyelesaian juga dihuraikan. 
Akhir sekali, hasi/ yang diperolehi akan dibentangkan dan dibandingkan dengan 
kaedah lazim. 

ABSTRACT: The optimal allocation and sequencing of inspection stations is to be 
presented in this paper. The notion of optimality in this case encompasses factors 
such as the cost of inspection, the cost of allowing a defective unit to be output, 
and the cost of internal failure. The main goal of this work is to develop an efficient 
optimisation tool which will minimise the cost functions of the stated optimisation 
problems. The optimisation tool to be considered is Genetic Algorithm (GA). An 
introduction to the concepts of the GA and its encoding of the solutions to the 
problems in a genetic form and the evaluation of the resulting genetic code to give 
the fitness of those solutions will be discussed. The setting of the parameters for 
the genetic operators and the ways of initialising the solution population are also 
described. Finally, the results obtained are presented and compared to those 
produced by conventional methods. 
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INTRODUCTION 

Inspection is concerned with separating product units that conform to specifications from 

those which do not and preventing non-conforming (defective) product units from reaching 
the customer or the external user. The inspection activity can be carried out in many ways: 
manual (involving human inspectors), automated and hybrid (combination of manual and 

automated systems). Recent technological developments in automated visual inspection, 

pattern recognition and image processing techniques have led to an increase in the 
implementation of automated systems. Errors and inconsistencies in manual inspection 

provide the motivation for this increased implementation. However, higher implementation 

costs and technical difficulties can be associated with automated systems. The selection and 
location of such inspection stations must be carefully considered since it will have a significant 

effect not only on the product quality but also on the total cost of manufacturing. 

The Genetic Algorithm (GA) is a robust search technique that has proven to be a good solution 

to some difficult optimisation problems. It was first introduced by Holland (Holland, 1975). The 
name genetic algorithm derives from the analogy between the representation of a complex 
structure by means of a vector of components and the genetic structure of a chromosome or 

ca/led string. GA are inherently parallel, general purpose optimisation procedures, which utilises 

a survival of the fittest approach. New strings of solutions are generated by applying genetic 
operators to strings in the current population. A standard GA employs reproduction, crossover, 

mutation and inversion operators. Detail descriptions of how the GA works is available in 

(Goldberg, 1989). Now GA are used to resolve complicated optimisation problems, example, 

timetabling, job-shop scheduling, numerical optimisations and games playing. 

MULTI-STAGE 

A multi-stage production-inspection system can exist in a serial or non-serial configuration. 
Figure 1 shows these two types of the systems. In a serial system, each processing stage 

except the first in the series has a single immediate predecessor. Also, each stage except 
the last has a single immediate successor. Inspection stations may exist between the 

processing stages. In a non-serial system, at a certain stage, the product may be assembled 
or joined with products from other processing lines. Hence the optimisation of the allocation 

of inspection stations is more complex. Only a serial system is to be considered in this paper 

on inspection stations allocation with the following criteria (Raz and Kaspi, 1991 ): 

i. There are a series of production stages. 

ii. Discrete product units of a single type flow in a fixed linear sequence from one stage 

to the next. 
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iii. Products flow in batches or lots of size one. 

iv. Each production stage consists of a single production operation followed by zero, one 
or more inspection operations in a fixed sequence. 

v. Every production or inspection operation incurs a constant unit processing cost. 

vi. In every inspection operation there are two kinds of inspection errors: 
- classification of a conforming unit as non-conforming. 
- classification of a non-conforming unit as conforming. 
These errors will impact on the cost, effectiveness and credibility of quality assurance 
efforts. 

vii. Product units classified as non-conforming are removed from the production line and 
are disposed of in two ways: scrap or rework. 

viii. Delivering a non-conforming unit to the customer will cause a penalty cost. 

D Processing stage 

<> Inspection station 

(a) 

(b) 

Figure 1(a). Serial Production-inspection System (b) Non-serial 
Production-inspection System 
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The optimal design of inspection stations has been studied since the 1960s. Raz (1986) 

surveyed the elements of the inspection stations allocation problems and the models that 

had been proposed in the literature. His paper quoted 17 models developed from 1964 to • 

1984 for serial and non-serial production systems. Most of the models used dynamic 

programming techniques. Ballou and Pazer (1982 and 1985) developed a production­

inspection model allowing f<?r inspection errors in a serial production system. Chakravarty • 

and Shtub (1987) suggested a shortest-path heuristic method to determine the strategic 

location of inspection activities and the production lot-sizes. Peters and Williams (1987) used 

dynamic programming and direct search techniques to determine the location of quality 

monitoring stations. The problem with dynamic programming is that when the number of 

processing stages increases the complexity of computation increases dramatically. A non­

optimum solution would be accepted as optimum as the problem becomes larger. Furthermore, 

the optimisation decisions are taken separately, stage by stage, rather than by performing 

global optimisation of the multi-stage system. 

More recent work has been carried out by Raz and Kaspi (1991 ). The Branch-and.:Bound 

technique was suggested to allocate imperfect inspection operations in a fixed serial multi­

stage production system. This methodology still involves stage by stage optimisation. The 

application of Artificial Intelligence (A/) was suggested by Raz (1986). Kang et al. (1990) 

proposed a Rule-based technique to determine near-optimal inspection stations. The present 

work extends the work of Raz and Kaspf (1991) to global optimisation by the use of Al 

techniques. 

PROBLEM STATEMENT 

The inspection stations allocation model is formulated with the objective of minimising the 

total cost per product unit. The total cost includes the unit cost of inspection and cost of 

defective items. There are two kinds of cost of defective items. One is the rework and 

replacement cost before the defective items are released from the company. The other is 

the penalty cost for each non-conforming unit reaching the customer. 

The problem is to decide which inspection operations will be performed immediately following 

each production stage. The constraints on the optimisation problem are based on a required 

outgoing fraction of non-conforming units and the number of inspection operations. 

In this paper, the multi-stage production-inspection model developed by Raz and Kaspi 

(1991) is considered. The model is c;alled the Transfer Functions Model (TFM). The TFM 
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provides a unified framework for the analysis of multi-stage systems with different types of 
production and inspection operations. This model facilitates the implementation of the 
calculations required to find the optimal solution. The TFM at each stage, whether a production 
or inspection stage, is described by two transfer functions: the Cost Transfer Function and 
the Quality Transfer Function. 

The Cost Transfer Function (CTF) relates the cumulative unit costs before and after completion 
of the production or inspection operation denoted by C; and C0 respectively. The Quality 
Transfer Function (QTF) of an operation relates the probabilities q ; and q0 that a unit is non­
conforming before and after the operation respectively. Figure 2 shows the TFM for a single 
processing and inspection stage. The description of the parameters could be found in (1991 ). 

qi Ci qoCo 

Salvage 

Figure 2. Transfer Functions Model for a Single 
Processing and Inspection Stage 

The following multi-stage problem is to be addressed: 

Consider a multi-stage manufacturing system depicted in Figure 3, where there are up to 
3 possible inspection stations to be located at any of 10 processing stages, stage o at 
stage 9. The raw material is input at stage O and the finished product· is output from stage 9. 
The optimal location will minimise the total cost. 

The total cost CTS1 of a single stage is given by Raz and Kaspi (199~) : 

CT{s/ = Co{s/ + q o[s/·PC[s+IJ 

where 
- total cost at stage s 
- production cost at the next stage (s+ 1) 
- Oto 9 

The value of CTfsJ depends on the inspection configuration at each stage. 
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It is given that the output of the CTF and QTF of one stage will be input to the next stage. 

Therefore the Corsi and q 0rsJ are taken as C;rs+tJ and q ;rs+ tJ· Equations 1 and 2 are applied again 

to find Cars+tJ and q ofs+ tJ · The total cost for the next stage can then be described as: 

Cfrs+ I} = Co{s+1] + qo{s+1J·PCrs+2] 

When the product exits the whole system and reaches the customer or external user, a 

penalty cost is incurred for each non-conforming unit. The unit penalty cost is PEN. The CTF 

is denoted by CTfPJ: 

Cr{p] = C o{9] + qo{9}.PEN 

Stage O Stage 1 Stage 9 

q;c; qoCo qoCo qoCo 

Figure 3. TFM for the Whole Production Line 

The total cost per product unit, Cr, for the entire system can be described as: 

Cr = Crf9J + CrfpJ 

Cr is the objective function of the inspection stations allocation and sequencing problem. 

The values of the production and inspection parameters used in this work are available from 

the author. 

IMPLEMENTATION 

This section will describe how to represent solutions in a binary form and the evaluation of 

the fitness function. Finally the results of optimisation experiments will be presented and 

compared to those obtained by Raz and Kaspi (1991) with the Branch-and-Bound technique. 

Representation 

The insP.ection stations allocation problem has a solution of 1610 possible solutions. This is 

because there are 10 processing stages and at each stage there are: 
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3 31 
I:-' 
i=o (3 -i)! 

or 16 possible inspection arrangements. In order to represent all 16 possible configurations 
in each stage, 4 bits are used. Table 1 lists all possible 4-bit strings and the corresponding 
configurations. There are 10 processing stages so 40 bits are required to represent all 
possible configurations. An example of 40-bit string representing a particular solution to the 
problem is shown in Figure 4. 

Table 1. Binary Representation of Inspection Stations in a Single Stage 

Binary Value Decimal Value Order of Inspection Stations 
(4 bits at each Stage) Stations 

0000 0 No Inspection 
0001 1 11 
0010 2 11 - 12 
0011 3 11 - 12 - 13 
0100 4 11 - 13 
0101 5 11 - 13 - 12 
0110 6 12 
0111 7 12 - 11 
1000 8 12 - 11 - 13 
1001 9 12 - 13 
1010 10 12 - 13 - 11 
1011 11 13 
1100 12 13 - 11 
1101 13 13 - 11 - 12 
1110 14 13 - 12 

1111 15 13 - 12 - 11 

I 

O I 1 213 4 5 6 7 8 9 

I I I 
I I I 
I I I 

Figure 4. Binary Representation for 1 O Processing Stages 

Note that in this representation no invalid solution would occur and all strings correspond 
to possible inspection station configurations. 
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Fitness Evaluation 

The inverse of the objective function of CT is the fitness function for the GA. The fitness 

value will correspond to the inverse of the total unit cost of manufacturing. 

Table 2 shows an example of fitness evaluation for a given string. The fitness evaluation 
routine is coded in Turbo Pascal and linked to the main GA programme, also implemented 

in Turbo Pascal. 

Table 2. Fitness Evaluation 

Stage Inspection C o/s] qo/s] Cr/sJ 
Order 

0 No Inspection 10.00 9.000 x 10-2 11.80 

1 No Inspection 30.00 1.537 x 10·1 32.31 

2 No Inspection 45.00 2.553 x 10·1 57.76 

3 11 104.12 2.450 x 10-2 104.85 

4 No Inspection 134.12 8.303 x 10-2 136.61 

5 No Inspection 164.12 1.380 x 10-1 165.50 

6 No Inspection 174.12 1.811 x 10-1 181 .36 

7 No Inspection 214.12 2.221 x 10·1 218.56 

8 12 254.23 1.859 x 10-2 254.56 

9 No Inspection 274.23 6.766 x 10-2 274.23 

PEN 274.23 6.766 x 10-2 308.07 

FINAL 308.07 

Fitness = 1/308.7 

EXPERIMENTATION AND RESULTS 

The algorithm generates the initial population randomly and performs the reproduction, 

crossover and mutation operations according to the flow diagram of Figure 5. Ten experiments 
were carried out with different settings of GA parameters. The maximum number of generations 
was 500. Table 3 shows the empirically chosen GA parameter settings and the final results 

of the experimentation. Figures 6(a-j) show how the total unit cost Cr reduced as the 

optimisation progressed. Experiment 10 gave the best result with C7 equal to 265.38. 

Figure 7 shows the inspection stations allocation produced from Experiment 10. 

Further experiments were carried out by changing the GA parameters and increasing the 
number of generations. However, no improvement was obtained and thus the result from 

Experiment 10 can be regarded as the optimum solution found by the GA to the given problem. 
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Randomly Create Initial 
Population 

Evaluate each Inspection 
Configuration 

in the Population 

Apply the 
Reproduction 

Crossover 
Mutation 
Inversion 
Operators 

Form New Population of 
Inspection Configurations 

Choose the Best Inspection 
Configuration in 

the Final Population as the 
Solution 

Cost Function 

Figure 5. Structure of GA Implemented for Inspection Stations Allocation 

Table 3. Final Results for Inspection Stations Allocation by GA 

No. of Population Crossover Inversion Mutation Total Unit 
Experiment Size Rate Rate Rate Cost 

1 50 0.9 0.2 0.04 267.36 
2 100 0.9 0.2 0.04 266.30 
3 150 0.9 0.2 0.04 265.41 
4 200 0.9 0.2 0.04 270.73 
5 400 0.9 0.2 0.04 265.41 
6 50 0.9 0.3 0.04 271.72 
7 50 0.9 0.2 0.05 265.41 
8 50 0.8 0.2 0.02 268.08 
9 50 0.8 0.2 0.03 275.49 

10 100 0.8 0.3 0.03 265.38 
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0 100 200 300 400 500 

Generations 

(j): Experiment 10 

Figure 6. Optimisation Curves for Inspection Stations Allocation 

Order of inspection stations: 

P: Processing stage I: Inspection station 

Figure 7. Inspection Stations Allocation 

DISCUSSION 

It can be seen that the GA is a powerful optimisation technique provided the appropriate set­
up of the genetic operators was applied. The GA managed to produce the optimum solution 
even when it had no initial knowledge about inspection sequencing and location. The total unit 
costs were high at the initial generations, then reduced quickly to near the optimum level after 
relatively few generations. The final results obtained by the GA procedure is 265.38 while that 
of the Branch-and-Bound technique was 267.52 an improvement of 0.8%. 

The GA used a binary string to represent the configuration of the inspection stations within 
all the processing stages. The evaluation of each string was based on the total unit cost 
(see steps 1 - 3). This is the only knowledge required by the GA unlike the Branch-and­
Bound technique and other heuristic methods where initial knowledge of the configuration 
is required and the new configuration is decided from one processing stage to another. This 
would allow the possibility of discarding the optimum solution at the initial stage of the 
computation. 
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Step 1: Obtain a string 
Stage Sub-strings 

0 0 0 0 0 

1 0 0 0 0 

2 0 0 0 0 

3 0 0 0 1 

4 0 0 0 0 

5 0 0 0 0 

6 0 0 0 0 

7 0 0 0 0 

8 0 . 1 1 0 

9 0 0 0 0 

Step 2: Read the inspection parameters. 

-Read the value of inspection parameters (PC, RC, e, n, etc.) 

-Set PEN = 500 

-Initialise C;roi = O 

-Initialise q0r01 = 0 

Step 3: Calculate the Total Unit Cost (Inverse Fitness Value) 
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